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Abstract

Experimental data are often in need of smoothing without a pre-determined trend line equation. This manuscript demonstrates how
spreadsheet software can be programmed to smooth experimental data via cubic splines. Once the trend lines (splines) have been con-
structed, it is also simple to interpolate values and calculate derivatives and integrals. The formulas to carry out the calculation are listed
and explained in the manuscript.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Sometimes it is desirable to display experimental data
with a trend line. There are several advantages to con-
structing smooth curves to indicate trends in data. For
instance, if the equations for these curves are determined,
interpolation may be done as well as finding derivatives
and integrals anywhere along the trend curves. Commonly,
the trend line is generated via some type of regression (e.g.,
a linear regression line or curve) and many commercial
experimental data software has this capability but some
of the standard software are limited to selected regression
functions. In the case of Microsoft Office Excel 2003 (Red-
mond, WA), the built-in trend/regression types are linear,
logarithmic, polynomial (up to sixth-order), power, and
exponential; however, more complex (user-defined) equa-
tions are missing. SigmaPlot Version 8.02 (by Systat Soft-
ware, San Jose, CA), another popular software, is far
more powerful and has a larger number of built-in func-
tions to which the data may be fitted. However, sometimes
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it is desirable to just indicate a trend in the data without
forcing a particular curve function through the points. In
Excel, data points can be connected by straight lines and
by a curved line, but we really have no control over the
curved line(s) nor can we use the equation of the curve
for any calculation (as it is not available to the user). Sig-
maPlot offers much of the same features, data points can
be connected by straight of curved lines but, again, the
equations of the curve are not available.

The smooth curves used in Excel passes exactly through
the data points which may not be desired if, for example,
one desires to indicate an overall trend rather that connect-
ing points. Thus, Excel can draw smooth curves but cannot
smooth the experimental data other than with specific
regression functions. SigmaPlot offers smoothing mecha-
nisms that allows smoothing using polynomial regression
with various weight functions to estimate the potential
error within the data but the resulting equation is not dis-
played, rather sampling data on the curve is revealed.
Other more powerful mathematical software such as MAT-
LAB Version 7.3 (by MathWorks, Natick, MA), Octave
Version 2.1.73 (a free command line program using a lan-
guage compatible with MATLAB, University of Wiscon-
sin, Madison), and Mathematica Version 5.2 (Wolfram
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Fig. 1. Cubic spline construction.
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Research, Champaign, IL) also have powerful curve-fitting
routines and programming language.

In order to construct curves through experimental data
points, cubic splines are often used. Here, each segment
between two neighboring data points are connected with
a third-order polynomial [1]; thus, for N data points,
N � 1 polynomials (splines) are used. Conditions are set
in order to create smooth transitions between each segment
and to define the system so that all the constants in the
polynomial may be determined. The normal cubic splines
go exactly through the data points. In an effort to create
a curve which does not go exactly through the data points,
Klaus and Van Ness used an enhanced spline technique [2].
In that case, fewer than N � 1 polynomials were used and a
typical least square regression mechanism was applied
to determine the ‘‘best’’ overall curve. Later, the method
was further modified to include uncertainties in the exper-
imental data and calculation of more suitable data points
where the polynomials joined [3]. The method was complex
and a FORTRAN program could be ordered from the
authors. FORTRAN was also the choice of two other
methods of smoothing data with spline functions, but the
programs were too lengthy to be listed [4]. Another exam-
ple of a method of data smoothing, also based on cubic
splines, has previously been suggested in which the splines
are constructed, not through the original experimental data
points but between them, and the code for Q-BASIC pro-
gram was provided [5].

While there are many computer software that can be
(and has been) used for programming cubic spline equa-
tions, Excel was chosen in this work because of its familiar-
ity among researchers and students. It offers data storage,
data manipulation, graphical representation, and is avail-
able on most personal computer systems already. Students
in both high school and college are exposed to spreadsheets
as part of their curricula. Educational research has shown
that spreadsheet applications assisted in promoting prob-
lem-solving skills in students and expanding their capa-
bilities [6,7]. While other more powerful software and
programming languages exist (e.g., MATLAB, Octave,
and Mathematica), spreadsheets continues to be success-
fully applied to a variety of scientific principles such as
chemistry [8] and engineering [9,10]. In this work, a spread-
sheet workbook is constructed based on the smoothing
technique described by Klasson [5].

2. Mathematical background

Cubic splines join adjacent data points with a third-
order polynomial as shown in Fig. 1, and with N number
of experimental data points, N � 1 number of splines [poly-
nomials, f(x)] define the overall curve [1]. The point where
two splines meet is sometimes referred to as a node.

In order to find the 4(N � 1) constants for the polynomi-
als, a set of restrictive conditions are defined [1,5]. Briefly,
the values of f(x); the first derivative, f 0(x); and the second
derivative, f00(x) at the nodes are set equal for the joining
polynomials. At the endpoints, f 001 ðx1Þ and f 00N�1ðxNÞ are
set to zero [1] for normal cubic splines or they can be set
to know values or to f 001 ðx2Þ and f 00N�1ðxN�1Þ [2]. With the
above conditions, the equations system is completely
defined with a smooth transition between splines at nodes.
The constants are then found by restructuring the standard
polynomial equation to another form [5]. Ultimately, the
equation system takes the following matrix form:
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where

aiþ1 ¼ ðxiþ1 � xiÞ; biþ1 ¼ 2ðxiþ2 � xiÞ;
ciþ1 ¼ ðxiþ2 � xiþ1Þ; and ð2a; 2b; 2cÞ
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: ð3Þ
The equation system can be easily solved with Gaussian
elimination. Once the values of f00(x) have been determined;
interpolation, derivatives, and integrals can be done
through the following equations [5]:

fiðxÞ ¼
f 00i ðxiþ1 � xÞ3 þ f 00iþ1ðx� xiÞ3
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f 0i ðxÞ ¼
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If should be noted that in Eqs. (1)–(6), f 00i denotes the sec-
ond derivative evaluated at the ith point’s x-value (xi) using
the ith spline, remembering that f 001 and f 00N are zero. Eq. (5)
is simplified when the derivative is evaluated at x = xi.
Likewise in Eq. (6), the expression is less complex when
a = xi and b = xi+1 or when a = xi and b = x.

The above discussion addresses normal cubic splines
through the nodes determined by the experimental data
points without smoothing. Smoothing of data can, for
instance, be accomplished by the method described by
Klasson [5], where two fictitious points [at (x0, y0) and
(xN+1, yN+1)] are first created outside the range of the ori-
ginal experimental data. Then another set of data points is
extracted ‘‘between’’ the available points; this new set
(denoted mid-points) is used to create splines for smoothed
trend lines. The equations for this are as follows:

fictitious point 1 x0 ¼ x1 � 0:05ðx2 � x1Þ

y0 ¼ y1 þ
ðy2 � y1Þðx0 � x1Þ
ðx2 � x1Þ

ð7a; 7bÞ

fictitious point 2 xNþ1 ¼ xN þ 0:05ðxN � xN�1Þ

yNþ1 ¼ yN þ
ðyN�1 � yN ÞðxNþ1 � xN Þ

ðxN�1 � xN Þ
ð8a; 8bÞ

for i ¼ 0 to N ; xmi ¼
xiþ1 þ xi

2
; ymi ¼

yiþ1 þ yi

2
: ð9a; 9bÞ

This creates a total of N + 1 mid-points that can be con-
nected with N splines. Once the splines have connected
the temporary points, interpolation is used to determine
the smoothed y values at the original x-values. This se-
quence of calculations corresponds to a smoothness factor
(sf) of 1 [5]. If the smoothed values of y at the xi’s are used
as new starting points for another iteration with mid-points
as described above, the smoothness factor is said to be
equal to 2 and so on. We may also consider a smoothness
factor with a value of <1 as a method to weigh the raw with
the smoothed data. By this notion, a smoothness factor of
0.25 would represent a data point with a y-value calculated
from the raw y-value and the smoothed y-value (with a
smoothness factor of 1). The equation below demonstrates
the principle of calculating a smoothed y-value with a
smoothness factor of 0.25.

ysf¼0:25 ¼ 0:75yraw þ 0:25ysf¼1 ð10Þ
3. Numerical solution and spreadsheet development

Most of the equations above are simple to program in
Excel. The one possible complication is solving the matrix
(Eq. (1)) without VisualBasic programming; however, the
matrix can be reduced to
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as a first step, where bb2 = b2, rr2 = r2, and

for i ¼ 3 to N � 1;
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As the second step, the above matrix is further reduced to
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where

for i ¼ N � 1 to 2;

rrri ¼
rri � cirrriþ1

bbi
ðnote that rrrN ¼ 0Þ: ð14Þ

This represents an easily programmable Gaussian elimina-
tion [1] and the matrix in Eq. (13) gives the solution to the
equation system as f 00i is equal to rrri. We can now begin
developing a suitable Excel workbook structure (Fig. 2),
which contain two worksheets (titled Main and Calc) in
the same workbook.

As suggested in Fig. 2, the raw data of x and y is entered
in columns A and B of the Main worksheet. Next we must
begin entering some of the functions for the calculations
into the Calc worksheet, as follows (see Fig. 3):

A2 =0 The A column contain the counter i.
A3 =IF(Main!A3=’’’’,’’’’,A2+1) If there is not an x-

value in the Main worksheet, the cell will be blank,
otherwise the counter will be increased by 1.

B2 =Main!A3�0.05*(Main!A4�Main!A3) Calcula-
tion of the x-value (x0) of the ‘‘low’’ fictitious data
point from Eq. (7a).



Fig. 2. Structure of Main worksheet in an Excel workbook.

Fig. 3. Structure of Calc worksheet in an Excel workbook.

Fig. 4. Further construction of the Calc worksheet.
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B3 =Main!A3 Transfer of the first x-value (x1).
B4 =IF(A4=’’’’,B3+0.05*(B3�B2),Main!A4) If the

counter column is empty, calculate the x-value
(xN+1) of the ‘‘high’’ fictitious data point from
Eq. (8a), otherwise transfer the ith x-value (xi).

C2 =Main!B3+(Main!B4�Main!B3)*($B2�$B3)/
($B4�$B3) Calculation of the y-value (y0) of the
‘‘low’’ fictitious data point from Eq. (7b).

C3 =Main!B3 Transfer of the first y-value (y1).
C4 =IF(A4=’’’’,C3+(C2�C3)*(B4�B3)/

(B2�B3),Main!B4) If the counter column is
empty, calculate the y-value (yN+1) of the ‘‘high’’
fictitious data point from Eq. (8b), otherwise
transfer the ith y-value (yi).

At this point, we can copy the formulas in A3, B4, and
C4 to A4:A100, B5:B100, and C5:C100, respectively. Even-
tually, the smoothed y-values at the original x-values will
be calculated in column D in the Calc worksheet but it is
easier to skip entering the formula until the rest of the Calc
worksheet has been explained. Next we can enter the for-
mulas that will construct and solve the matrix (Eq. (1))
and calculate the second derivatives (f 00i ) for the splines at
the nodes.

E5 =B5�B4 This calculates the first a-value (a3) from
Eq. (2a) for Eq. (1) matrix; the rest of the ai-values
are calculated in the same way.

F4 =2*(B5�B3) This calculates the first b-value (b2)
from Eq. (2b) for Eq. (1) matrix; the rest of the
bi-values are calculated in the same way.

G4 =B5�B4 This calculates the first c-value (c2) from
Eq. (2c) for Eq. (1) matrix; the rest of the ci-values
are calculated in the same way.

H4 =IF($A5=’’’’,0,6*(D5�D4)/(B5�B4)�6*(D4�D3)/
(B4�B3)) If this is the last point, set rN to zero,
otherwise ri is calculated from Eq. (3) for Eq. (1)
matrix.
I4 =F4 bb2 = b2 when the matrix in Eq. (1) is reduced
to Eq. (11) matrix.

I5 =F5�E5/I4*G4 bbi is calculated from Eq. (12a)
for Eq. (11) matrix.

J4 =H4 rr2 = r2 when the matrix in Eq. (1) is reduced
to Eq. (11) matrix.

J5 =IF($A6=’’’’,0,H5�E5/I4*J4) If this is the last
point, set rrN to zero, otherwise rri is calculated
from Eq. (12b) for Eq. (11) matrix.

K3 =0 rrr1 ¼ f 001 ðx1Þ is set to zero.
K4 =IF($A5=’’’’,0,(J4�G4*K5)/I4) If this is the last

point, rrrN ¼ f 00N�1ðxN Þ is set equal to zero, other-
wise, rrri ¼ f 00i ðxiÞ is calculated from Eq. (14) for
Eq. (13) matrix.

The formulas in E4, F4, G4, H4, I5, J5, and K4 should
be copied to E5:E100, F5:F100, G5:G100, H5:H100,
I6:I100, J6:J100, and K5:K100, respectively. We have
now solved the matrix system in Eq. (1) and have the infor-
mation needed to interpolate, find derivatives, and integrals
for the spline functions through the raw data. However, we
lack the smoothing mechanism. We can accomplish this by
expanding the calculations that take place in the Calc work
sheet. Fig. 4 shows the structure of this expansion.

In the columns displayed in Fig. 4, we define the splines
that will trend the experimental data with a smoothness
factor of 1. As previously described, the process start by
creating the mid-point values, which will then be the start-
ing points for the smoothed trend lines. The spreadsheet
formulas to accomplish this closely follow the same pattern
as in the basic cubic spline functions above. The only differ-
ence is that we have one more data point to work with due
to the addition of fictitious data points followed by cre-
ations of mid-points.

L2 =(B3+B2)/2
M2 =(C3+C2)/2
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N4 =L4�L3
O3 =2*(L4�L2)
P3 =L4�L3
Q3 =IF($A4=’’’’,0,6*(M4�M3)/(L4�L3)�6*(M3�

M2)/(L3�L2))
R3 =O3
R4 =O4�N4/R3*P3
S3 =Q3
S4 =IF($A5=’’’’,0,Q4�N4/R3*S3)
T2 =0
T3 =IF($A4=’’’’,0,(S3�P3*T4)/R3)

The formula in column U deserves a little explanation.
This column contains values of y (at the original raw x-val-
ues) which lay on the smoothed trend line defined by the
spline functions through the mid-points. The concept is
demonstrated in Fig. 5.

As is noted in Fig. 5, the coordinates (x,ys) of the
smoothed data point must be calculated via the interpola-
tion equation described in Eq. (4). Below are the equations
that calculate these smoothed data values in the Excel
worksheet.

U2 =U3+(U4�U3)*($B2�$B3)/($B4�$B3) This cal-
culation is used to set up the y-value for the next
mid-point, when the smoothness factor is 2 and
it corresponds to a new low fictitious point.

U3 =(T2*(L3�$B3)^3+T3*($B3�L2)^3)/6/(L3�L2)+
(M2/(L3�L2)�T2*(L3�L2)/6)*(L3�$B3)+(M3/
(L3�L2)�T3*(L3�L2)/6)*($B3�L2) This calcu-
lates the first y-value (ys1) from Eq. (4); the rest
of the ysi-values are calculated in the same way.

The content of L2, M2, N4, O3, P3, Q3, R4, S4, T3, and
U3 should be copied to L3:L100, M3:M100, N5:N100,
O4:O100, P4:P100, Q4:Q100, R5:R100, S5:S100,
T4:T100, and U4:U100, respectively. As mentioned before,
the U column contains the smoothed y-values at the origi-
nal x-values as well as the two fictitious x-values, and if we
X

Y mid-points

smooth data point

raw data point

splines through mid-points

Fig. 5. Construction of splines through mid-points. There are two mid-
points that are difficult to note in the figure, as they are located slightly
beyond the first and last raw experimental data point.
wanted to find an even smoother trend line, we would use
these smoothed y-values as starting points. With this
knowledge we can complete the rest of the Calc work-
sheet for smoother curves (with sf = 2 and sf = 3) as shown
in Fig. 6. The formulas that should be entered are as
follows:

V2 =L2 The mid-point x-values remain the same.
W2 =(U3+U2)/2 New mid-point y-values are calcu-

lated from the smoothed y-values in column U.

To continue, the formulas in V2 and W2 should be cop-
ied to V3:V100 and W3:W100, respectively, and the formu-
las in N2:U100 should be copied to X2:AE100. The
formulas in V2:AE100 should be then be copied to
AF2:AO100 and this completes all the entries for smooth-
ing the raw (y) data in three iterative steps for smoothness
factors of 1, 2 and 3. As noted in Fig. 2, the smoothness
factor is entered in cell D1 in the Main worksheet and this
information is needed to select one of the three smoothed
values that were calculated in the Calc worksheet, columns
U, AE, and AO. The formula in column D in the Calc
worksheet accomplishes this. It also uses Eq. (10) for a
smoothness factors of less than 1.

D2 =IF(AND(A2=’’’’,A1=’’’’),0,IF(Main!$D$1=0,C2,
IF(Main!$D$1<1,Main!$D$1*U2+(1� Main!$D$1)*
C2,IF(Main!$D$1=1,U2,IF(Main! $D$1=2,AE2,
AO2)))))

The formula in D2 should be copied to D3:D100. Fig. 2
also contains an area in the Main worksheet that is set
aside for the calculation of the y-value (in column G) from
an arbitrary x-value in column F. The calculation is fairly
simple according to Eq. (4), once it has been determined
which of the splines should be used. This task is also car-
ried out in the Calc worksheet (see Fig. 7).

The formulas needed to look up which spline need be
used (defined by the coordinates of the nodes on both sides
and corresponding second-order derivatives) can be written
as follows:

AP2 =IF(Main!F3=’’’’,’’’’,Main!F3) If there is an arbi-
trary x-value for which an y-value is needed, it will
be copied here.

AQ2 =INDEX(B$2:B$100,MATCH(AP2,
B$2:B$100,1)�IF(AP2=MAX(Main!A$3:A$100),
1,0)) This function looks up the raw data x-value,
less than the arbitrary x-value.

AR2 =LOOKUP(AQ2,B$2:B$100,D$2:D$100) This
function looks up the corresponding y-value to
the AQ2 x-value.

AS2 =LOOKUP(AQ2,B$2:B$100,K$2:K$100) This
function looks up the secondary derivative at the
point defined by AQ2 and AR2.

AT2 =INDEX(B$2:B$100,MATCH(AP2,B$2:B$100,
1)+IF(AP2=MAX(Main!A$3:A$100),0,1)) This



Fig. 6. Further construction of the Calc worksheet to create smoother trendlines.

Fig. 7. Further construction of the Calc worksheet for interpolation, derivatives, and integration.
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function looks up the raw data x-value, greater
than the arbitrary x-value.

AU2 =LOOKUP(AT2,B$2:B$100,D$2:D$100) This
function looks up the corresponding y-value to
the AT2 x-value.

AV2 =LOOKUP(AT2,B$2:B$100,K$2:K$100) This
function looks up the secondary derivative at the
point defined by AT2 and AU2.

AW2 =(AS2*(AT2�AP2)^3+AV2*(AP2�AQ2)^3)/6/
(AT2�AQ2)+(AR2/(AT2�AQ2)�AS2*(AT2�
AQ2)/6)*(AT2�AP2)+(AU2/(AT2�AQ2)�AV2*
(AT2�AQ2)/6)*(AP2�AQ2) The y-value at the
arbitrary x-value is calculated from Eq. (4).

This calculated y-value can now be transferred to the
Main worksheet into column G by

G3 =IF(F3=’’’’,’’’’,Calc!AW2) in the Main work-
sheet.

The formula in cell G3 in the Main worksheet can be
copied to G4:G100. The workbook is now just missing
formulas for derivatives and integrals. The derivative at
the nodes and the integral under the curve between two
nodes may be calculated from Eqs. (5) and (6), which
result in the formulas in column D and E of the Main
worksheet.

D3 =IF(A3=’’’’,’’’’,IF(A4=’’’’,(C3�C2)/(A3�A2)+
Calc!K2*(A3�A2)/6,�Calc!K3*(A4�A3)/2+(C4
�C3)/(A4�A3)�(Calc!K4�Calc!K3)/6*(A4�A3)))
If there is an x-value in column A, the derivative is
calculated using Eq. (5).

E3 =IF(A3=’’’’,’’’’,0) At the first point there is no
area under the curve.

E4 =IF(A4=’’’’,’’’’,0.5*(A4�A3)*(C3+C4)�1/24*
(A4�A3)^3*(Calc!K3+Calc!K4)+E3) The integral
is calculated between the x-value in column A and
the previous x-value according to Eq. (6) and this
area segment is added to the previous area calcu-
lated in the cell above.

The formulas in D3 and E4 should be copied to
D4:D100 and E5:E100, respectively. Columns AX and
AY in the Calc worksheet (see Fig. 7) contains formulas
that will be used for calculating the area under the curve
between the first arbitrary x-value and another arbitrary
x-value, entered into column F in the Main worksheet.
These formulas are

AX2 =AT2�AQ2 This calculates the x distance be-
tween the two nodes of the spline, on which the
arbitrary x-value in column AP is located as this
value is needed often in Eq. (6).

AY2 =1/24/AX2*(AV2*(AP2�AQ2)^4�AS2*(AT2�
AP2)^4+AS2*AX2^4)+0.5*((AU2/AX2�AV2 *
AX2/6)*(AP2�AQ2)^2�(AR2/AX2�AS2*AX2/
6)*(AT2�AP2)^2+(AR2/AX2�AS2*AX2/6)*AX-
2^2) The integral is calculated between the arbi-
trary x-value in column AP and the node at the
beginning of the spline used.

The formulas in AX2 and AY2 can be copied to
AX3:AX100 and AY3:AY100, respectively. The final for-
mulas that need to be entered are those in column I in
the Main worksheet. These formulas are

I3 =IF(F3=’’’’,’’’’,0) The integral is zero at the first
arbitrary point.

I4 =IF(F4=’’’’,’’’’,LOOKUP(Calc!AQ3, A$3:A$100,
E$3:E$100)+Calc!AY3�LOOKUP(Calc!AQ$2,
A$3:A$100,E$3:E$100)�Calc!AY$2) The area
under the spline curve(s) is calculated from the
area under the curve from the first arbitrary
x-value in the F-column to the present
value.



Fig. 8. Example of calculations using the Excel workbook with a smoothness factor of 0.5.
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The programming above may appear tedious but is
quite logical, if familiarity with basic Excel functionality
exists. Fig. 8 shows the result of using the above spread-
sheet with four data points. The figure is presented as a
method by which to check the programming above. Verifi-
cation that the spreadsheet was constructed correctly was
performed using Octave, modified to allow the built-in
SPLINE.m function to use normal cubic splines (data not
shown).
4. Numerical application

The applications for using smooth curves to interpolate
data or determining derivatives are numerous and appear
in many fields of science. In the area of biotechnology or
chemical engineering, derivatives are needed to calculate
reaction rates, and in the area of chemistry, derivatives
are necessary for determination of thermodynamic proper-
ties. To illustrate an example in the biotechnology area, we
have plotted data from Koga et al. [11,12], who carried out
a time experiment where bacteria converted glucose to
gluconolactone and then to gluconic acid in a fermentation
study. The various concentrations were recorded in time
and are shown in Fig. 9. To illustrate the usefulness of
splines we have constructed cubic splines as described
above with a smoothness factor of 0.5. As expected, the
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Fig. 9. Fermentation profiles to illustrate smooth cubic splines with a
smoothness factor of 0.5. The curves on the graph were generated by
entering large number of arbitrary x-values into the Excel work book (in
the F-column of the Main worksheet).
splines represent the data quite well. This approach could
have been used to find derivatives needed to describe
the kinetics of the fermentation. Koga et al. used simple
finite difference methods to carry out their analysis of data
[11].
5. Conclusions and limitations

As shown in this manuscript, spreadsheet functions can
be used to construct cubic splines to trend, smooth, inter-
polate, integrate, and derivate experimental data. The the-
ory of splines is not new, just its implementation into a
spreadsheet environment without intricate programming.
Just as with other methods using cubic splines, there are
limitations of their implementation. As a general guideline,
the experimental data should not be too closely spaced; for
example, duplicate readings of y at the same x-value must
be reduced to a single value. Data too closely spaced will,
in general, cause large fluctuation in the shape of the over-
all trend line and may cause improbable estimates of inter-
polated values as well as derivatives and integrals if
smoothing is not performed [5]. In the above spreadsheet,
the raw data should also be entered in the order of
increasing x-values. Another limitation (or strength) of
the smoothing method described above is that it seeks to
straighten the overall trend curve to a straight line between
the first and last data point [5]. Some of the other published
smoothing methods used in combination with cubic splines
also have limitations. For example, the capability of the
extended spline fit technique to describe the data depends
on which nodes to keep and which nodes to eliminate when
finding the spline functions [2,3]. Regardless of their limita-
tion, they all present solid methods for smoothing of exper-
imental data and providing a method by which to find
derivatives and integrals.

There are other mathematical software packages like
MATLAB or Octave that have built-in subroutines for
spline functions: provided with a set of x- and y-values,
interpolation can be performed via splines and trend lines
can be constructed and visually displayed. A variety of
smoothing mechanisms also exist within these programs.
The above spreadsheet was not developed to replace these
powerful software programs—it was developed to show the
capabilities of Excel and provide a simple method for eval-
uating experimental data. The wide-spread use of Excel
makes the program easy to transport and distribute.
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